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An algorithm for Monte Carlo simulation (MC simulation) of catalytic reactions with widely 
varying time scales is described. The idea of the proposed algorithm is that the system is divided 
into "fast"  and "slow" subsystems, which are simulated separately, each in its own time scale. A 
MC model of a heterogeneous catalytic reaction, A + ½B 2 ~ AB, which occurs through the 
Langmuir-Hinshelwood mechanism, supplemented with a slow stage of reversible adsorption of 
inert particles, is also investigated. It has been shown that, in this model, various relaxation 
oscillations exist and the rate constant of desorption of particles A is a crucial parameter in the 
formation of oscillations. © 1992 Academic Press, Inc. 

In recent years, much attention has been 
focused on the study of the dynamic behav- 
ior of complicated chemical systems in 
which the rates of various processes are 
considerably different. For catalytic sys- 
tems this may be associated with differences 
between fast processes of the main reaction 
and slow parallel processes, such as revers- 
ible oxidation of the catalyst surface, inert 
buffer adsorption, and changes in the gas 
phase (1-3). Models of such systems based 
on ordinary differential equations obtained 
assuming the surface to be uniform and em- 
ploying the mass-action law are well studied 
(4-8). But in this field, the Monte Carlo 
method (MC method) is seldom used (9). 
The studies provided by MC models are well 
known to be of great interest because they 
allow one to investigate in detail the pro- 
cesses occurring on the surface and the ef- 
fects caused by inhomogeneity of surface 
coverage. Study of complex dynamics (4-8) 
by MC models is also of great interest. How- 
ever, there are certain difficulties associated 
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with this. MC simulation of the processes 
with sufficiently different time scales re- 
quires long computational time since in this 
case some probabilities are very small. In 
this paper a possible method of solving this 
problem is suggested. 

It is useful to address well-known tech- 
niques used in qualitative analysis models 
of such systems, in particular the singular 
perturbation approach or its zeroth-order 
expansion, viz. the quasi-steady-state ap- 
proximation (4, 10, 7). In both methods, the 
system is divided into two subsystems: one 
consists of slow processes and the other 
consists of fast ones. The "fas t"  subsystem 
is believed to be always in quasi-equilibrium 
state during all changes of the "s low" sub- 
system. This approach can be used in MC 
simulation of catalytic systems. 

The idea of the proposed MC algorithm is 
that the system is divided into fast and slow 
subsystems and that they are then simulated 
separately, each in its own time scale. When 
the subsystems are simulated separately, it 
is possible to investigate the dynamics of 
the total system in the following sequence: 
(i) we change the state of the slow subsystem 
by a small quantity (ii) we restore the equi- 
librium state in the fast subsystem after ev- 
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ery change in the slow one. It may turn out 
(this possibility is discussed later) that when 
a vast difference in the time scales of  the 
subsystems exists, the number of  events in 
the fast subsystem (per one event  in the slow 
one) necessary to restore the equilibrium 
would be (in MC simulation) considerably 
less than the actual physical ratio. It is evi- 
dent that for the total system not to deviate 
much from the steady state it is necessary 
that the slow subsystem change by small 
steps and the fast one reach the quasi-equi- 
librium state after every  such step. Let  us 
demonstrate  with the following example. 

Consider the reaction (its mechanism is 
not essential in this case) in which the origin 
of  the coverage Os is associated with the 
slow processes and that of  the coverage Of 
is associated with the fast ones. Let  the slow 
processes be described by the set of the rate 
constants {Ki}, i = I . . . . .  n and the fast 
ones by the set o f { K j } , j  = (n + 1) . . . . .  
m. The slow and the fast subsystems are 
then characterized by the time scales r~ = 
I/E K i and zf = 1/E Kj, respectively.  Let  us 
assume that r~ > >  rf. To transform the rate 
constants into correspondent  probabilities 
we multiply all constants Kg by time unit z~ 
and all Kj by time unit zf: 

P i  = K f l ' s ,  P1 = K jT f .  

In this case, probabilities Pi and Pj have 
maximum possible values E Pi = 1 and E 
Pj = I. Note  that since the probabilities for 
each subsystem are calculated separately, a 
proportional alteration of  all rate constants 
in the slow subsystem does not influence the 
magnitudes of  probabilities for either fast 
or slow subsystems. Such alteration results 
only in a change of ts (time interval associ- 
ated with the MC step). This means that the 
computational  time does not depend on the 
real time scale of the slow processes.  As- 
suming that the lattice consists of N sites, 
the surface coverages O~ and Of are not 
equal to zero and coverage O~ is not in 
steady state. 

1. First, we simulate the slow processes,  
choosing them at random in accordance 

with P;, then choosing at random the sites 
on the lattice, etc., in accordance with the 
mechanism of the slow processes.  The time 
will be increased for each event  by the in- 
crement  

At = - (rs In ~)/N,  

where 0 < ¢ < 1 is a pseudo-random number  
uniformly distributed on (0,1). We define 
the value of S t, a step in changing the slow 
subsystem, as S t = AOs/O~ = 0.01. The 
simulation continues until O~ changes by 
AO~ = 0.01 0~. 

2. We simulate the fast processes only, 
choosing them at random in accordance 
with Pj, etc. The simulation continues until 
the fast subsystem reaches the quasi-equi- 
librium state. Then item 1 is carried out. 

It is worthwhile to note that in simulating 
the fast processes (item 2) one need not mea- 
sure their time, since the system changes in 
the time scale of slow processes.  

V E R I F I C A T I O N  O F  T H E  A L G O R I T H M  

In this section, we verify the validity of 
the algorithm of time separate modeling 
(TSM). For  this we compare  the results ob- 
tained through TSM with those of  the nu- 
merical solution of equations for the well- 
studied catalytic Langmuir-Hinshelwood 
reaction with the slow reversible adsorption 
of  the inert buffer 

K 1 

(1) A + Z~-~-AZ  
K_!  

K 2 

(2) B 2 + 2Z---~ 2 B Z  

K 3 

(3) A Z  + BZ--~ A B  + 2 Z  (1) 
K4 

(4) Buf  + Z ~--- BufZ,  
K 4 

where A, B2, and Buf are the particles in a 
gas phase and Z is an empty site on the 
surface of the catalyst. The model of  this 
reaction employing the mass-action law (a 
mean field approximation,  MFA) is 
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OA = R1 - R-1  - R3, 

(~B = R2 - R3, (2) 

OBuf = R4 - R 4, 

where R i are the rates of  the processes  

R 1 = g l O z ;  R -  1 = K_IOA, R2 = 2K202z, 
R 4 = K 4 0 z ,  R 4 = K-4OBuf, 

R 3 = K3OAOB, 

and Oa, OB, OBuf, and Oz are the coverages  
for AZ, BZ, BufZ,  and Z, respect ively,  and 
Ki are the rate constants .  The partial pres- 
sures PA a n d  PB2 are included in K 1 and K 2. 

The MC model  of  mechanism (1) (without 
buffer stage 4) has been  studied intensively 
(11-18). The case K3 --~ % K_I  = 0, the 
wel l -known model  ZGB (11), has been  stud- 
ied in detail. The M F A  model  of  mechanism 
(1) has been  studied in (5, 6, 19, 20) as well. 
It  is established that in the M F A  model ,  
kinetic self-sustained oscillations occur  
which are caused by (i) differences in ad- 
sorption orders of  the particles A and B2, 
and (ii) the slow buffer  stage (4). In (20), the 
set of  rate constants  (Kl = 0.85, K_I  = 0.3, 
K2 = 1.23, K 4 = 0.001, K_4 = 0.0005, K 3 
103 - 105) yields p ronounced  relaxation os- 
cillations in the M F A  model.  However ,  the 
magnitudes of  these constants  cannot  be 
used directly in the MC model  to compare  
the results of  MC modeling with those of  the 
numerical  integration in (20), because  in the 
M F A  model ,  the surface coverage  is homo- 
geneous while in the MC model  it is inhomo- 
geneous.  The inhomogenei ty  of  coverage  in- 
fluences considerably the kinetics of  the 
two-site adsorpt ion of  B2 and the react ion 
rate (and as a consequence ,  the total kinet- 
ics) so that the compar i son  itself makes  no 
sense in this case (14, 18). One can try to 
obtain a homogeneous  coverage  in the MC 
model  by allowing surface diffusion, but (at 
K 3 --~ oc) this requires a very long computa-  
tional time. Howeve r ,  we can avoid these 
difficulties. We shall be able to deal directly 
with a MC model  in which there is a homoge-  
neous surface coverage  if we solve Eqs.  (2) 
by MC simulation. Equat ions (2) can be rep- 
resented in the form of 

(~z  = R I - R I  - R 2  - R 4  

+ R_4 + 2R3. (2a) 

To solve Eqs. (2a) with the MC technique,  
it is necessary  to simulate directly the terms 
in its right side. In contrast  to the inhomoge- 
neous case,  here one can directly simulate 
successful events  if one calculates their 
probabili t ies through R i values. This simula- 
tion must  result in the behavior  of  the MC 
model  for the case of  homogeneous  cover-  
age. The general scheme of  simulation of  
Eq. (2a) by the MC method at K 3 ~ ~ is 
given below. The above  algorithm (TSM) is 
included in this scheme.  The simulation is 
per formed on the set o f N  = 10,000 " s i t e s "  
and hence the coverage  changes by AS = 
_+ 0:0001 when one site becomes  either oc- 
cupied or vacated.  Molecular  act  probabili-  
ties are calculated directly by  the corre- 
sponding rates of  processes  as follows: 

P4 = R47"s 

P - 4  = R-4"rs 

P1 = Rl'rf 

P 1 = R-l~'f 

P2 = R2"rf, 

(3a) 

(3b) 

where ~s = 1/(R4 + R_4) and ~'f = 1/(Rl + 
R_I + R2), Here ,  in compliance with the 
set of  parameters  (20), R z = 0. Pseudo-  
random numbers ,  ~:, uniformly distributed 
on (0,1) have been used for simulation. 

1. First  the slow subsys tem is simulated; 
i.e., only the probabili t ies P4 and P - 4  a re  
used. I f  the r andom number  ~: -< P4, then 
OBu f increases by AS; otherwise OBu f de- 
creases  by AS. After  each event ,  at first the 
t ime is increased by At = - (rs In ~)/N and 
then the values ~'s, P4, and P 4 are recalcu- 
lated in accordance  with formulas (3a). The 
simulation cont inued until OB~ f changes by 
AOBu f in accordance  with the chosen step 
St. R e m e m b e r  that St = A@]O~ < <  1. After  
this a pass  to the fast  subsys tem is carried 
out .  

2. Here  the molecular  events  are chosen  
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by a random number  ~ in accordance with 
probabilities PI, P-1,  and P2. 

(i) If adsorption of A occurs  and simul- 
taneously OB = 0, then OA increases by AS. 
Otherwise (at OB ¢ 0) the value 0 A does not 
change and 0 8 decreases by AS. 

(ii) If adsorption of B 2 occurs,  the fol- 
lowing situations are analyzed for each of 
two particles B. (a) If  OA = 0, the particle 
B adsorbs; i.e., 0 8 increases by AS. (b) If 
O A 5 ;& 0,  then O8 does not change and O a 
decreases by AS. 

(iii) If desorption of  A occurs  then O A 
decreases by AS. 

After each event  the probabilities PI, P -  1, 
P2 are recalculated by the formulas (3b). The 
simulation continues until steady state is 
reached. After this, item 1 is carried out. 

In simulating adsorption of  A and B 2 parti- 
cles and the reaction between A and B on 
the surface, the above sequence of  steps 
(item 2) corresponds with the situation of 
homogeneous  coverage at K3 ~ ~. As 
shown (20), in this case the homogeneous 
coverage of  the surface always consists of 
particles of  one kind only, viz. either A 
or B. 

The TSM algorithm has two heuristic pa- 
rameters,  the values of which are to be 
found experimentally: S,, a step of change 
of  the slow subsystem; and NM, a number 
of  MC steps required for the fast subsystem 
to reach a quasi-equilibrium state. 

We studied dynamic behavior  of the MC 
model for various values of  St, from 0.01 to 
0.05, and for various values of  NM, from 50 
to 200. It has been found that NM = 100 
is sufficient for all values of S t and further 
increase of  NM did not result in any change 
of  the values measured. We also found that 
the most suitable value of  St is 0.02 (as a 
reasonable compromise between accuracy 
of  results and computat ional  time). In the 
MC experiment ,  the initial coverage for 
buffer particles was O(0)Buf = 0.6 and in the 
numerical integration, it was O(0)Buf = 0. 
The numerical integration was performed 
within the accuracy of  5.10-4. In both cases 
the same parameter  values were used (20). 

The rate constant in numerical integration 
was K3 = 1. l0 4. Figures 1 and 2 show data 
of numerical integration and of MC model- 
ing at St = 0.02, respectively.  One can see 
that the main features,  viz. the time scale 
and the oscillation f requency and ampli- 
tudes of  @B and OBuf coverages,  coincide 
with good accuracy,  as do the phase dia- 
grams. The angle-shaped forms in Figs. 2b 
and 2c and the instability of  the oscillation 
periods in Fig. 2a result f rom the stepped 
change of the value, OBu f, in the MC experi- 
ment. Actually, because of  the stepped 
change, the critical value of OBuf (critical 
point) is defined within the accuracy of  
AOBu f = 0.02OBu f. Could we obtain exactly 
the same dynamics in the MC simulation as 
in the numerical solution? This estimation 
has been made for the given values of  pa- 
rameters,  and we have found that the in- 
definition of  the value of OBuf at the critical 
point can result in the difference between 
the periods of some oscillations of up to 100 
sec. Comparing the curves in Fig. la  with 
those in Fig. 2a, one can see that the differ- 
ence for all periods, except  the last one, is 
about 60 sec. The above data (Figs. 1 and 2) 
show validity of the TSM algorithm. 

THE CASE OF INHOMOGENEOUS 
SURFACE COVERAGE 

In the previous section, to verify the TSM 
algorithm we used it in the case for which 
the numerical solution gave correct  results. 
In this section the TSM algorithm is applied 
to investigate the situation in which the 
MFA model of  mechanism (1) fails com- 
pletely. We studied the dynamics of mecha- 
nism (1) under an inhomogeneous surface 
coverage. For  this purpose we inserted the 
TSM algorithm into the ordinary scheme of  
MC simulation described in (11). The results 
obtained are briefly described below. 

For  simulation of the surface a square lat- 
tice of  40 x 40 with periodic boundary con- 
ditions has been used, the step for the slow 
processes was St = 0.02, and the number  of 
MCS for fast processes  per one St was 
NM -- 100 - 400. For  plotting time depen- 
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0 ,  K 4 = 0 . 0 0 1 ,  K _  4 = 0 . 0 0 0 5 ,  K 3 = 104, O(0)Buf = 0 .  

dences of  the react ion rate we depicted,  for 
convenience ,  values of  react ion rate for ev- 
ery 20 MCS. Magnitudes of  the constants  of  
adsorpt ion/desorpt ion of the buffer  particles 
K4 and K 4 are of  no importance ,  as is men- 
tioned above.  Only their ratio is essential. 
In our exper iments ,  K4/K 4 = 2. But since 
the total sys tem changes in the t ime scale of  
the slow subsys tem,  we assign somewhat  

arbi trary values of  K4 = 0.02 and K _  4 = 

0.01 and plot the t ime dependences  directly 
in seconds.  

The region of existence of oscillations 
runs over,  roughly, f rom K1/K2 ~ 0.7 up to 
K1/K2 - 1. In Fig. 3 peak  relaxation oscilla- 
tions at K1/K2 = 1 are shown. In this case 
(large partial pressure  of  A) the sys tem 
spends most  of  the t ime in the state with a 
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FIG. 2. Monte Carlo simulation. Plots of coverages OB and OBuf vs time (a), trajectories o n  O A - OBu  f 

plane (b), trajectories on O s - OBu f plane (c). K 3 --~ zc O(0)Bu f = 0 .6 ;  the remaining parameters are the 
same as those in Fig. I. 

low react iv i ty  (08 = 0, high cove rage  O A )  

and only  a bit o f  t ime in the state with high 
react iv i ty  (O B # 0, O a = 0). As K, de- 
c reases ,  the sys tem spends  more  and more  
t ime in the state with high react iv i ty  (Figs. 
4 and 5), and osci l lat ions gradual ly  change  
f rom sharp peaks  to " s h e l v e s . "  

Figures  4 and 6 - 8  show how the behav io r  

o f  the sys tem changes  depend ing  on the 
value o f  the rate cons tan t  o f  desorp t ion  o f  
part icle A, i.e., K 1. This cons tan t  is a cru-  
cial pa ramete r  defining the dynamic  behav-  
ior o f  the sys tem.  As K ~ increases ,  the 
sys tem passes  th rough  an entire sequence  
o f  states. At  first, at K ~  = 0, the sy s t em is 
in a nonreac t ive  state. This state is no t  



M C  S I M U L A T I O N  O F  C A T A L Y T I C  R E A C T I O N S  3 1 5  

R 

0.30 -~ 

0 . 2 0  

0 . 1 0  - 

0 . 0 0  - 

| = ,  0 , h . ,  , h , . , l , , , , |  , , , , l ,  , I , S , = , ,  h H I | . H ,  h H i l o , , . h , , o | o ° ° o |  .o°lW H o d H o ' i ' ' ' d ' H ' | ° ° ~ ' h  

0 200 400 000 800 

T 1 M E (see) 

FIG.  3. P lo t  o f  r e a c t i o n  r a t e  R vs  t ime .  K 1 = 1, K _  [ = 0 .04 ,  K 2 = l ,  K - 2  = 0,  K 4 = 0 .02 ,  K - 4  = 0 .01 ,  

K 3 --~ ~ ,  O(0)Bu f = 0 .15 .  

R 

D.~O - 

0.20 - 

0 . 1 0  - 

W 
0 .00 -  ~ , , i ., I I .  

I ; ; ; : I : . . . ,  . . . . .  , . . . . . .  : : ; I ; ; : ; ~  . . . . . . . . .  , 

O 5 0  tO0 150 200 250 300 

T I M E ( sec )  

F I o .  4. P lo t  o f  r e a c t i o n  r a t e  R vs  t ime .  K1 = 0 .9 ;  the  r e m a i n i n g  p a r a m e t e r s  a r e  t h e  s a m e  as  t h o s e  in 

F ig .  3. 



3 1 6  L U T S E V I C H  A N D  T K A C H E N K O  

0 .30  - 

0 .20  - 

0.10 - 

0 . 0 0  - 
! , L  

h . . l h | . |  i , , . | | | . | | 1 . | . 11 , . | | 1  I , l | | | . | l l , , | | l | . | . l | | | , | , , | . l . . | | l . l | | l . l | l | , - | . l . , | , l , , , ,  
I . . . .  I . . . .  ~ " ! 41 ,  . . . .  I . . . .  ' . . . .  ' . . . .  ' . . . .  I . . . .  ' . . . .  ' . . . .  ' . . . .  I . . . .  I . . . .  I . . . .  . . . . .  I . . . .  I . . . .  . . . . .  

0 tO0 200 ]00 ,~00 

T I H E ( s e e )  

FIG. 5. P lo t  of  r e a c t i o n  ra te  R vs  t ime .  K x = 0.8; the  r e m a i n i n g  p a r a m e t e r s  a re  the  s a m e  as  t hose  in 

Fig,  3. 

R 

0 .30  - 

0 .20  - 

0 . 1 0  - 

0.00 - 

tO0 200 300 ,fO0 500 

T I H E  ( s e e )  

FIG. 6. P lo t  o f  r e a c t i o n  r a t e  R vs  t ime .  K 1 = 0.9. ,  K i = 0.016; the  r e m a i n i n g  p a r a m e t e r s  a re  the  s a m e  

as  t h o s e  in Fig.  3. 



M C  S I M U L A T I O N  O F  C A T A L Y T I C  R E A C T I O N S  317  

R J 

0 . 3 0  - 

0 . 2 0  - 

0 . I 0  - 

0 . 0 0  - 

I . . . .  I . . . .  I . . . .  , . . . . .  I . . . .  , . . . . .  I . . . .  , . . . .  I . . . .  , . . . .  I . .  
. . . . . . . .  , . . . . . . .  : " I  . . . . . . . . . .  . . . .  : ' " ' o  . . . . . . . .  : I  . . . .  : : :  , . . . .  , . . . .  , . . . .  . . . . .  " "  

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  6 0 0  7 0 0  

v 

T I H E  ( s e c )  

FIG. 7. Plot of reaction rate R vs time. Kl = 0.9., K[ = 0.024; the remaining parameters are the same 

as those in Fig. 3. 

0 . ] 0  - 

0 . 2 0  - 

0.10 - 

0.00 - 

I . . . |  h . . . h . . . h * . l | * . * . i . . * l l H | . h l . . | | . l . h l * | l | l * l l ' * * ' | | | | |  h l l * h * l l h  | | l l * * ' * h * |  | h * "  
I . . . .  I . . . .  ! . . . .  I . . . .  I . . . .  ' . . . .  ! . . . .  v . . . .  I . . . .  I . . . .  , . . . .  I . . . .  | . . . .  ' . . . .  ' . . . .  ' . . . .  I . . . .  ' . . . .  I ' ' '  

2 0 0  ,~00  6 0 0  ~ q O  

TIHE ( s e c )  

FIG. 8. Plot of reaction rate R vs time. K 1 = 0.9., K_ [ = 0.028; the remaining parameters are the same 

as those in Fig. 3. 



318 LUTSEVICH AND TKACHENKO 

shown here. The system then passes into a 
state with peak relaxation oscillations (Fig. 
4) and then into states with more and more 
chaotic oscillations (Figs. 6-8). At last a 
nonoscil latory state with a non-zero reac- 
tion rate occurs,  which is not shown here. 
Such behavior  of the system can be ex- 
plained reasonably.  For  convenience,  let us 
designate the high reactivity state (OB ¢ 0, 
OA = 0) as 1 and the low reactivity state 
(08 = 0, OA ~ 0) as 2. It is evident that as 
K_ 1 increases, reactivity of  state 1 de- 
creases (fewer particles of A react), and re- 
activity of state 2 increases because more 
empty sites become available for B 2 adsorp- 
tion. Consequently the difference between 
the two states decreases,  leading to a de- 
crease in the amplitude of  oscillations of the 
reaction rate. Moreover ,  since values o f K  1 
are large, A molecules do not form a com- 
pact coverage in state 2, and so the system 
passes easily from state 2 into state 1 due 
to small fluctuations in the adsorption of  
reactants.  Thus,  the behavior  of the system 
becomes more and more chaotic as K ~ in- 
creases. A similar behavior in the MC model 
of reaction A + B --~ A B  has been observed 
(21) on small lattices. 

The examples given here demonstrate  
that the TSM algorithm may be used effi- 
ciently to study dynamic behavior  of  com- 
plex chemical systems in which the rates of  
various processes are considerably dif- 
ferent. 

CONCLUSION 

The algorithm presented attempts to sim- 
ulate catalytic reactions by MC techniques 
when there are processes occurring on 
vastly different time scales. The basic idea 
is that the correct  behavior  of stiff systems 
can be obtained if the system is divided into 
two subsystems (one consisting of  the slow 
variables and another  consisting of  the fast 
ones), which are then simulated separately, 
each in its own time scale. The fast subsys- 
tem is assumed to always be in a quasi- 
equilibrium state during all changes of  the 
slow subsystem. Then,  if the relaxation time 

of the fast subsystem is much less than the 
characteristic time of the slow subsystem, 
one can use, during MC simulation, much 
fewer fast events per slow event  than the 
actual physical ratio. 

There is some analogy between the sug- 
gested approach and the MC simulation 
methodology of kinetics of  thermal desorp- 
tion processes.  In real systems, the activa- 
tion energy for surface diffusion is known to 
be about 15-20% of that for desorption,  and 
the ratio of diffusion events per desorption 
event  is very large. Since the ratio is large, 
the adsorbed overlayer  is assumed to be in 
equilibrium state. MC simulation of  thermal 
desorption is usually conducted as follows: 
after removing each particle from adlayer 
(slow event), a new equilibrium among the 
rest is reached through surface diffusion (fast 
events). In this case it turns out that equilib- 
rium in the adlayer can be maintained with a 
much lower ratio of fast events per slow 
event  than the actual physical ratio. Of 
course, in complex reaction systems the 
equilibrium state is reached in a more com- 
plex way than that in an adlayer of nonreac- 
tive particles in the case of  nonassociative 
desorption. But the general criterion is the 
same in both cases: the relaxation time of the 
fast subsystem should be much less than the 
characteristic time of  the slow subsystem. 

To obtain correct  results with the TSM 
algorithm, two parameters should be found 
experimentally: S t and NM. The value of  St 
defines the accuracy of the results obtained 
and the computational time. For  the total 
system not to deviate much from steady 
state, St should be small enough in any case. 
The effect of  such deviation for a complex 
system may be unexpected.  To find the ap- 
propriate value of NM it is necessary to 
take into account  that in critical points, the 
relaxation rate may become very slow (criti- 
cal slowing-down). In this case, it is conve- 
nient to find two values of NM, one near the 
critical point and one far from it, and use 
both in a numerical experiment.  In order  to 
avoid the influence of the relaxation regime, 
measurements  must be performed after the 
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fast subsystem reaches equilibrium state. 
The efficiency of the TSM algorithm in- 
creases as the stiffness of the system in- 
creases because, as noted above, a compu- 
tational time does not depend on real time 
scale of the slow subsystem. 

In conclusion, the TSM algorithm was uti- 
lized to study the dynamic behavior of the 
MC model of the heterogeneous catalytic 
reaction, A + ½B ~ AB, through the Lang- 
muir-Hinshelwood mechanism, supple- 
mented with a slow stage of reversible ad- 
sorption of inert particles. The validity of 
the TSM algorithm was checked through 
comparison with a numerical solution when 
we simulated a spatially homogeneous sur- 
face coverage. Then the TSM algorithm was 
used to study the situation in which surface 
coverage is spatially inhomogeneous and 
when the numerical method fails. It has been 
found that, in this case, there exist various 
relaxation oscillations in the MC model and 
the desorption rate constant of particles A 
is a crucial parameter in the formation of 
oscillations. The TSM algorithm has demon- 
strated efficiency in resolving problems 
when analytical/numerical methodology 
fails and when the traditional scheme of MC 
simulation requires a very long computa- 
tional time. 
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